The Metals Handbook defines hardness as "Resistance of metal to plastic
deformation, usually by indentation. However, the term may also refer to
stiffness or temper, or to resistance to scratching, abrasion, or
cutting. It is the property of a metal, which gives it the ability to
resist being permanently, deformed (bent, broken, or have its shape
changed), when a load is applied. The greater the hardness of the metal,
the greater resistance it has to deformation.
There are three types of tests used with accuracy by the metals industry; they are the Brinell hardness test, the Rockwell hardness test, and the Vickers hardness test. Since the definitions of metallurgic ultimate strength and hardness are rather similar, it can generally be assumed that a strong metal is also a hard metal. The way the three of these hardness tests measure a metal's hardness is to determine the metal's resistance to the penetration of a non-deformable ball or cone. The tests determine the depth which such a ball or cone will sink into the metal, under a given load, within a specific period of time. The followings are the most common hardness test methods used in today`s technology:
There are three types of tests used with accuracy by the metals industry; they are the Brinell hardness test, the Rockwell hardness test, and the Vickers hardness test. Since the definitions of metallurgic ultimate strength and hardness are rather similar, it can generally be assumed that a strong metal is also a hard metal. The way the three of these hardness tests measure a metal's hardness is to determine the metal's resistance to the penetration of a non-deformable ball or cone. The tests determine the depth which such a ball or cone will sink into the metal, under a given load, within a specific period of time. The followings are the most common hardness test methods used in today`s technology:
- Rockwell hardness test
- Brinell hardness
- Vickers
- Knoop hardness
- Shore
No comments:
Post a Comment